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ABSTRACT 
 
Techniques and formulas will be presented that demonstrate an effective means of characterizing the rigid body motions 
of optical elements from their nominal positions as caused by manufacturing tolerances and thermal effects.  These 
techniques allow accurate prediction of the final position of a mechanically held lens element to be determined relative to 
mechanical datums.  Even a single lens element with entirely nominal dimensions often needs to be positioned relative to 
a mechanical reference; the effects of any inherent inaccuracy of the mounting process can be over-looked and/or over-
simplified.  Tolerances on lens seats, element radii, bore diameters as well as thermal effects need to be accounted for in 
a design in order to accurately predict the final optical performance of a system in an “as built” condition.  The 
differences in accounting for the mounting tolerances of edge mounted, cell mounted, and surface-centered elements are 
discussed.  The work presented will aid in linking the tools available to the optical engineer in the form of optical design 
software, with the data available to the mechanical engineer in the form of manufacturing and fabrication tolerances.   
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1. INTRODUCTION 

 
Modern lens design programs provide powerful tools for the design and optimization of multi-element lenses or optical 
systems, but a thorough understanding of how each element will interact with the mounting mechanics is required to 
fully account for all of the tolerances in the design.  In the case of multi-element lenses, the process of turning the lens 
design into fabrication prints is often the most difficult part. 
 
While there are many “rules of thumb” available and assumptions that designers use when tolerancing a lens, this paper 
provides both explanation of the various types of lens mounts used, as well as techniques and guidance to determine how 
the mechanical and optical fabrication tolerances can be fully accounted for within the optical design software.   
 
Though of a slightly different nature, thermal changes within a lens system cause the overall form of the optical system 
to change.  Like tolerancing errors, the mechanical structure that holds the lenses must be understood to accurately 
account for the shifts and shape changes, as temperature changes within the system.  This paper will provide explanation 
of how to accurately account for these changes and demonstrate a case in which the assumptions built into most optical 
design programs will yield very different results than reality, unless special measures are taken. 
 

2. BACKGROUND 
 
For the purposes of this paper, element mounting methods have been classified as one of three types: Edge-mounted, 
Cell-mounted and Surface-centered.  These three mounting methods represent a large majority of the opto-mechanical 
designs done to date and serve to cover most of the commonly implemented techniques. 
 
Edge-mounted refers to a design where the lens rests on a lens seat and is centered by the contact of the edge of the 
element to the inside of a bore formed by the metals, as shown in Figure 1.  This technique has also been called “drop-in 
assembly”1, referring to the fact that no special care is taken to align the elements within the mount.  This is a simple 
method to implement, and the rigid body movements that result from the tolerances can be easily seen.  While the benefit 
of this technique is the simplicity, the detriment is often the tight tolerances necessary to achieve high performance.   



   
 

Figure 1: Edge-mounted        Figure 2: Surface-centered         Figure 3: Cell-mounted 
 
Surface-centered elements are sometimes referred to as “bell-chucked” or “bell-clamped”.  In this method an element is 
held within the optical system by the optical surfaces alone, as shown in Figure 2.  While seemingly simple, this is a hard 
method to implement, and a hard technique to accurately predict the performance of within the optical system. 
 
Cell mounted designs are often implemented to overcome the very tight tolerances that would be required of an edge-
mounted design in a high performance system.  Cell-mounted designs are a class of opto-mechanical designs where the 
element is aligned within a sub-cell, this has also been referred to as “poker-chip assembly”1.  For the purposes of this 
paper we will assume that the element is bonded into the cell, and that the element and cell become a subassembly within 
the lens, as shown in Figure 3. 
 

3. ACCOUNTING FOR TOLERANCES IN THE LENS DESIGN 
 
Optical design programs offer many methods of accounting for the tolerances that control the final position of the lens 
elements.  These rigid body movements can be broken down into a combination of axial shifts and lateral shifts 
(decenter) of both elements as a whole, and as single surfaces.  Axial shifts are straightforward to account for and can be 
determined through accurate accounting of spacer, element, and seat tolerances.  The remaining perturbations, and the 
drivers that cause them, are shown in Table 1.  Section 4 covers the simulation of the physical results in more detail. 
 

 Driver Physical Result  

Edge- 
centered 

Seat Tilt Element Tilt 

Radial Gap (Element to Bore) Element Tilt and Decenter 
Element Wedge Tilt of Free Surface 

Seat Decenter Element Decenter 

Bell-
clamped 

Seat Decenter Element Tilt and Decenter 

Seat Tilt Element Tilt and Decenter 
Cupping Angles Element Wedge 

Cell- 
mounted 

Radial Gap (Cell to Bore) Element Decenter 

Tilt of Cell Subassembly Element Tilt 
Concentricity of Seat Element Tilt and Decenter 

Parallelism of Seat Element Tilt and Decenter 
Element Roll Element Tilt and Decenter 

 
Table 1: Element perturbations and drivers 

 



4. MOTIONS DUE TO FABRICATION TOLERANCES 

4.1 Edge-centered 

For an edge-centered element the determination of decenter, tilt and wedge is relatively straightforward.  Figure 4 shows 
an element on a lens seat that is allowed to “roll” until the edge touches the ID of the metals.  Some optical design 
programs offer the ability to tolerance directly on “roll” by identifying the radial distance over which the element may 
roll.  Given that this option is not always available it is useful to break the “roll” of a lens into a tilt and decenter of the 
surface that is not resting on the lens seat. 
 
It is important to note that in many cases, particular rigid body movements of an entire optical element are often easiest 
to model as single surface movement instead.  Given that the edges of the element are not of optical importance, they can 
be ignored when predicting performance of the system.  In the case shown in Figure 4, the element has been allowed to 
“roll” on the surface against the lens seat.  The “roll” can be modeled in two equivalent ways.  The entire element could 
either be rotated about the center of the radius that is against the seat, or just the top surface could be rotated about the 
same center.  Given that rotating the lower surface about it’s center of curvature does not result in an optical change, 
only the motion of the top surface is of consequence.   The optical designer may either choose to take the necessary steps 
to rotate the free surface about the center of the mounting surface, or use a realistic simplification that approximates this 
movement. 
 

  
 

Figure 4: Roll of an edge centered element 
 

Figures 5 and 6 show how to simulate the roll as a combination of a tilt and a decenter of the upper surface.  Figure 5 
shows how the sag of a surface at a given distance from the centerline is calculated.  Figure 6 then shows how we can 
use the sag equation to determine the tilt and decenter of the top surface that results from rolling the element of Figure 4 
on the lower surface until the edge contacts the inner diameter of the mount.  The shift (decenter) of the top surface at the 
limit of the “roll” is given by equation 5 where CT equals center thickness of the lens element.  
 

                             
 

Figure 5: Sag determination 

222 rLy       Eq.  1 
22 yrL       Eq.  2 

22 yrrSag       Eq.  3 



                      
 

Figure 6: Accounting for “roll” of a edge mounted element 

4.2 Surface-centered 

Surface-centered refers to a class of mechanical mounts that utilize only the optical surfaces of the lens element to hold 
the elements orientation and position.  Ideally, when an element is mounted in this method, it will self-align, such that 
the centers of curvature for the two surfaces lie on a line that is normal and concentric to the lens seats.  This method can 
work well with lenses that have strong and opposed curvatures; ideally the lens would have almost a spherical shape.  
Lens elements that have surfaces that are nearly concentric do not fair well with this technique.   
 
4.2.1 Judging if an element will self-center 
The following equation2 can be used to judge if a lens element will self-center by determining if the following inequality 
is satisfied: 
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where yc is the semi-diameter of the associated lens seat and R is the radius of the surface on that lens seat.  While this 
may serve as a guideline, it assumes that if the condition of this formula is fulfilled, then the element will perfectly 
center.  In reality, a lens element will center only as long as there is sufficient force to overcome the friction between the 
glass surfaces and the lens seat.  Clearly geometry is the largest contributor to this, in that the shape of the surfaces will 
directly affect the leverage on the element, but items such as metal coatings, surface finish and materials all play a roll.  
In order to try to quantify the residual wedge present, when an item is bell clamped, we can look to lens fabricators.  
Fabricators use the following formula to determine what ETD (Edge Thickness Difference) is achievable given the 
“cupping angles” of a lens element.   
 

 
 

Figure 7: Cupping angles 
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  > 20º  ETD < 0.005mm 

11º <   < 20º  0.020mm > ETD > 0.005mm 

  < 11º  Not Recommended 

The achievable ETD values are given as an example but are variable given the materials and geometries that will be 
used.  Accurate values should be arrived at experimentally for a given set of conditions. 

 
4.2.2 Effect of a decentered seat on a surface-centered element 
If we assume that an element has suitable geometry to self-center we must then look at the tolerances of the lens seats 
that the element will be bell-clamped with.  The tolerances on seat decenter and seat tilt are especially significant.  If we 
regard one seat to be perfect, or a datum, and the other seat is decentered, then we see that the center of curvature of the 
datum seat remains unchanged, while the center of curvature of the surface touching the decentered seat is decentered by 
exactly the same amount.  This results in a tilt and decenter of the element, but like the case of the edge centered element 
we need only consider one surface.  In this case the tilted and decentered element can be simulated in the optical design 
software by simply applying the seat decenter to the element surface that is in contact with the displaced seat, as shown 
in Figure 8.  The decenter of this single surface is nearly equivalent to the rigid body motion that would have resulted, as 
shown in Figure 9. 
 

        
 

         Figure 8:Effect of seat decenter            Figure 9: CAD model of surface-centered element 
 

Figure 9 also shows that there is a secondary motion along the axis of the system that is likely insignificant and in this 
case equals about 1/20th of the horizontal motion.  Therefore, the actual motion of the surface as the element “rolls” to 
accommodate the shifted seat is a rotation about the center of curvature, of the upper surface, but can be approximated by 
a shift.  If the radii are particularly short, or spacings are particularly critical, then this approximation should be re-
visited.  
 
4.2.3 Effect of a tilted seat on a surface-centered element 
A tilted seat can be handled in much the same manner.  Figure 10 shows an element located between an ideal seat and a 
seat that has been tilted by 5º.  Because the center of curvature of the lower surface is following an arc, as the lens “rolls” 
about the top surface, there will again be a slight, and usually negligible, amount of axial shift. 
 

 



       
 

Figure 10: Shift of a surface centered lens   Figure 11: Calculation of shift   
 

22 YRL        (Eq. 2)  

)sin(TILTLShift         Eq. 8  

 
While a tilted seat will again cause a tilt and decenter of the element as a whole, it can more simply be modeled as a 
single surface decenter applied to the surface in contact with the seat that is tilted.  However, determining an appropriate 
amount of surface decenter is not as straightforward, because the motion of the seat is no longer equal to that of the 
element surface.  Figure 11 and equations 2 and 8 show how to calculate the appropriate lateral shift (decenter) to apply 
to the lower element surface, to simulate the element tilt and decenter caused by the seat tilt. 

4.3 Cell-mounted 

Cell-mounted designs are most often used when high positioning tolerances (centrations and tilts) are required.  Cell 
mounted designs offer the advantage of an intermediate alignment step to relieve some of the fabrication tolerances of 
the element.  In general, an element is placed within a precision metal cell.  Then the exposed surface of the optical 
element is aligned relative to the OD and one side of the cell.  There are various techniques used to align the top surface 
and they range in sophistication.  These techniques can be as simple as rotating the cell against a “V”, with a mechanical 
indicator on the top surface, to cells aligned on air-bearing spindles equipped with laser based centration measurement.  
The benefit of this technique is that the edge diameter and ETD, or element wedge, do not need to be accurately held.  
The lens seat controls the centration of the lower surface and the element is allowed to “roll” on that lower surface until 
the center of curvature of the top surface lies coincident with the axis of the cell (see Figure 13).  The “potting tolerance” 
is the tolerance that controls how well the top surface will be located within the cell.  It is often measured as a run-out of 
the top surface, measured normal to the surface and at the clear aperture diameter. 



 
 

Figure 13: Element with extreme wedge, centered in cell 
 

The effect of a tilted seat or a decentered seat is the same as it would be in a surface-centered element.  If you consider 
that the top surface will be centered or aligned to the cell datums such that the center of curvature of the top surface lies 
on the cell axis, then any tilt or decenter of the lens seat will cause a combination tilt and decenter of the lens element.  
The equations presented for determining the motion of a surface-centered element can be used for determining the rigid 
body movements of a cell-mounted element as well.   
 
In addition to these effects, one must consider how well any one cell within a multi-element lens is located relative to the 
other cells.  Variables that need to be accounted for include cell parallelism, cell run-out, radial clearance within lens 
barrel, spacer parallelism, and others.  In the case of the fit of a cell within a lens barrel, the tolerance would be modeled 
as element decenter.  Tolerances on spacer parallelism and adjacent cell parallelism could cause tilts of the entire lens 
cell; these tolerances would be modeled as element (or group) tilts. 

 
5. TOLERANCING METHODS 

 
Tolerance models of complex systems are often only partially developed.  Instead, many designers use intuition and rules 
of thumb.  This often works because the tolerances are overly tight, causing the assemblies to be more expensive and 
more difficult to assemble than necessary.  On the other hand, it is possible for the necessary precision of an assembly to 
be unrealized.  Therefore the individual tolerances, of the mechanical parts, may not be consistent with the accuracy 
required. 
 
Worst case tolerancing is often used for simpler systems.  It has the advantage of being easy to use and understand, while 
guaranteeing that if the parts are built to specification, the assembly will work.  The disadvantage of this method is that it 
tends to yield overly tight tolerances, especially as the assemblies become more complex.  If one is to look at lens 
centration in a cell mounted design, the lens centration is a function of the nominal radial gap between cell and barrel, 
the tolerance of the OD of the cell, and the tolerance of the ID of the barrel.  The centration of one lens relative to 
another is then dependent on five different inputs, assuming a common barrel ID.  If worst case is assumed, the 
tolerances will be much tighter than need be, because the tolerances apply for a case that is statistically improbable.  
 
To avoid overly tight tolerances, statistical tolerancing methods are often used.  Statistical tolerancing methods assume a 
normal distribution of dimensions within a tolerance band.  While this means that is it possible to put together multiple 
parts that are all within specification and still end up with a non-performing assembly, though this is improbable if there 
is a sufficient number of variables.  If y represents the output tolerance for an assembly and x represents the individual 
contributions of the parts within an assembly, the statistical tolerance can be calculated by the following equation: 
 

222 ...
21 nxxxy       Eq. 9 

  
In Equation 9, Δx would equal 6σx by the standards of the six sigma approach3.  This approach has been used 
successfully in the tolerancing of multi-element lens systems and is an appropriate alternative to worst-case tolerancing 
methods. 



 
6. ACCOUNTING FOR MOVEMENTS DUE TO TEMPERATURE CHANGE 

 
When thermal requirements are included with a lens specification, the analysis concentrates on absolute and 
deterministic movements of lens elements to a new nominal value at a given temperature.  The new values can be used to 
predict the optical performance of the system at the new operating temperature.  [NB a complete thermal analysis should 
also include the variation of index of refraction with temperature and pressure.  The index changes can be more 
significant drivers of optical performance than the mechanical changes.  However, since the index variation does not 
cause any physical movements, such discussion is outside the scope of this paper] 
 
The heart of the mechanical analysis rests with the approximation (accurate for most common materials at terrestrial 
temperature ranges) for three of the four lens parameters that have units of length assigned: radius of curvature, center 
thickness, and diameter.  These parameters scale linearly with the Coefficient of Thermal Expansion (CTE) of the optical 
material.  However, we will see that lens sag distances and lens-to-lens air space separations do not vary linearly when 
CTE’s of dissimilar materials are not equal.  When taking opto-mechanical design factors into consideration, lens sag 
distances and lens-to-lens air space separations are usually a function of two or more CTEs (glass and metal).  In 
addition, different lens-to-lens air space separations are obtained depending on the mechanical design approach for how 
the lens elements are mounted and constrained.  The formulas governing these lens movements are unique to the design 
approach and should be considered for accurate thermal modeling of optical performance.   
 
The reader is cautioned that the thermal analysis features incorporated into commercial lens design software are typically 
a subset of the formulas given for the expanded axial air distances.4,5  Accurate optical performance modeling may be 
accomplished by manually implementing these formulas for the specific mechanical design cases through the use of 
macros or other computational methods when using lens design software. 
 
The scaling equation governing dimensional change with temperature can be written as: 
 

 TLL  1' ,     Eq. 10  

 
where L’ is the new value of a parameter with unit of length after the temperature has changed and the material has 
reached a steady-state condition; L is the nominal value of the parameter;  is the CTE of the material; and T is the 
difference in temperature from nominal to the new operating temperature.   
 
Shown below is a sampling of representative CTE’s for selected materials commonly found in opto-mechanical lens 
systems, valid for temperatures from 0 °C to 80 °C: 
 
 
 
 
 
 
 
 
 
 

Table 2: CTE’s of common materials 
 

The discussion will apply to all four possible lens shapes:  convex/convex (cx/cx), convex/concave (cx/cc), 
concave/convex (cc/cx), concave/concave (cc/cc).  For clarity, Figures 1-3 depict cx/cx lens singlets.  For the other three 
possible lens shapes, the +/- sign before the square root in the sag equation must be chosen appropriately.  We start with 
the singlet made of material with CTE g and floating in air: 

 

optical materials mechanical materials

Zerodur 0.05 *10E-6 Invar 0.5 - 1.5 *10E-6
Fused Silica 0.5 *10E-6 Stainless Steel 300 series 10 *10E-6
BK7 7.1 *10E-6 Stainless Steel 400 series 16 - 18 *10E-6
all optical glass types 3.7 - 14.6 *10E-6 Brass 20 - 21 *10E-6
PMMA, Polycarbonate 60 - 70 *10E-6 Aluminum 23 - 25 *10E-6
NOA61 225 *10E-6

CTE  g /°C CTE  m /°C



                        
 
 

Figure 14: Singlet floating in air with dimensional sign convention 
 
 
The sag equation yields  
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After a thermal soak: 
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These formulas are simple and straightforward to understand.  They describe the changes to the mechanical dimensions 
for a singlet floating completely in air.  In reality, a singlet must be held in space by some mechanical means.  In this 
case, the equality in Equations 17 and 18 break down if the CTE of the optical and the mounting materials are dissimilar. 
 
Now consider the singlet with CTE αg mounted in a metal cell with CTE αm as depicted in Figures 1, 2, or 3.  The 
element is loaded against the seat by a retainer, an adhesive, or some other force.  The seat is the datum to which the 
thermal expansion will be relative.  After a thermal soak, the metal cell will have expanded in diameter and thickness a 
different amount from the glass lens element.  The constraint is that the seat remains in contact with the lens surface, but 
is free to slide along the surface.  In this case the sag will be a function of both αg and αm, and its expansion no longer 
scales linearly: 
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To calculate the axial shift of the element vertices, we depict the four possible cases of two lens elements (lens A with 
CTE αA and lens B with CTE αB), separated by a vertex-to-vertex distance, t, mounted on two independent seats (see 
Figure 15).   

Sign convention used in optical design for 
radius of curvature: 
 

R > 0 if center of curvature lies to the 
right of the surface (as for R1) 
 
R < 0 if center of curvature lies to the 
left of the surface (as for R2 ) 
 

The sign of a dimension is indicated by the 
direction of the arrow in all figures: 

pointing right = positive 
pointing left = negative 

 



 

 
 

Figure 15: Possible seat positions and dimensions 
 
Which side of lens A and B the two seats are chosen to be on, is usually left to the discretion of the mechanical designer, 
who takes into consideration a multitude of performance factors and general design criteria.  The thermal performance 
may vary widely for each case:  each one requires its own computation for t’.  Case A2 + B1 (alternately referred to as 
the “stacked lenses,” “stacked spacers,” or “rubber tube” model) is the default mounting assumption built into the 
computation of t’ in the major lens design software packages.  Seldom does this model apply to all elements of a 
multiple element lens system.   
 
To compute the correct formula for t’, the following algorithm is applied: 

1. compute seat-to-seat distance, ET, as function of t and sags 
2. express vertex-to-vertex distance, t, as function of ET 
3. apply thermal expansion individually to each term in expression for t 
 



Case A2 + B1: 

12 BA StSET                       Eq. 21 
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Case A2 + B2: 

22 BBA SCTtSET                      Eq. 22 

 
Case A1 + B2: 

21 BBAA SCTtCTSET                      Eq. 23 

 
Case A1 + B1: 

11 BAA StCTSET                       Eq. 24 

 
The equations for ET hold for all four lens types as long as the sign convention is followed. 
 

Case Seat on t’ ET’ 

1 A2 + B1 
  

2 A2 + B2 
  

3 A1 + B2 
  

4 A1 + B1 
  

 
Table 3: Summary matrix 

 
A two element lens has been defined in Figure 16 that will serve as an example of how the results differ between the four 
cases that have been presented.  Table 4 lists the values of t’ for the four cases, assuming a 40 degree rise in temperature. 
 

          
 

Figure 16: Example multi-element lens 
 

 
 

Table 4: Results of a rise in temperature of 40º 
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Lens 
Surface 
(mm) 

Radius 
(mm) 

Thickness 
(mm) 

CTE   
(ppm/C) 

A 
1 100 

15 7.4 
2 -100 

Airspace     20 23.6 

B 
1 75 

10 7.4 
2 -150 

 



Table 4 shows us that the expected growth of the air space, t’-t, is between 13.8 and 38.6 um.  Case A2 + B1 is the 
default case that would be simulated by lens design programs and it predicts the smallest growth.  In this example, Case 
A1 + B2 predicts ≈2.8 times the value of Case A2 + B1.  While the difference between the two is only 24.8 um, it is 
reasonable to assume that if the designer had reason to be concerned about the effects of the temperature change, then the 
differences between the cases may very well be significant enough to account for, as accurately as possible.  It is 
important to note that the separation between the cases grows with increasing CT’s of the elements as well as an increase 
in the mismatch of CTE’s.   

 
7. SUMMARY 

 
Many lens designs require precise positioning of optical lens elements within the optical system in order to achieve the 
desired performance. Lens design programs offer the means to determine the nominal position for each element and also 
provide the tools necessary to determine the performance when the fabrication tolerances are taken into account.  This 
thorough tolerancing of a lens design can only happen after a mechanical concept or layout has been established.  Once 
this mechanical concept is available it becomes possible to determine all of the possible rigid body movements of the 
lens elements within the system.  This paper has described these movements in detail and provided the equations 
necessary to calculate the resultant movements of lens elements that are located by imperfect mechanical features.  This 
paper has also outlined the three major categories of lens mounts and how they differ from each other.  Finally, the 
effects of a temperature change on a multi-element lens were discussed and the four cases of two elements separated by a 
homogeneous mount were presented. 
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