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ABSTRACT 
 
Changes in the shape of large lens elements due to the influences of gravity are important to consider in the fabrication, 
testing and assembly of optical systems.  Tried and proven methods used for mounting large mirrors to minimize the 
effects of gravity are typically not applicable to large transmissive lens elements, due to the simple requirement that the 
clear aperture of a lens must remain free of mechanical obstructions.  Precautions must be taken to ensure that an 
element’s surfaces are correctly fabricated and then maintained when assembled into the final system. The amount of 
distortion caused by the weight of a particular lens element is dependent on a number of factors including: size, aspect 
ratio, shape, material, and the support on which it rests.  Examples of the effects of these factors are modeled using 
Finite Element Analysis and demonstrated through interferometric testing.  Attention is given to the mounting of lens 
elements within a system and simulating “real-world” conditions. These “real-world” conditions can produce results that 
are different from what was expected if only ideal cases have been considered.  The work presented will aid the 
designer, fabricator, and metrologist to identify what optical elements and mounting conditions may be problematic and 
to minimize their effects. 

Keywords: optomechanical, finite element analysis, self-weight distortion, gravity, sag, optical mounting, tolerancing, 
surface irregularity 

 
1. INTRODUCTION 

 
Self-weight distortion is not a new problem to the opto-mechanical engineer, lens designer or metrologist, but the reality 
of the constant push for higher performance in smaller packages has led to increased challenges.  Self-weight distortion 
of optical elements is most pronounced on large optics and, therefore, much of the effort in both understanding and 
controlling it has been targeted toward large telescope primary mirrors.  However, as the requirements for surface 
irregularities have steadily become more stringent, driven in part by the decreasing operational wavelengths of optical 
lithography tools, issues with self-weight deflection have begun to affect elements of only a few inches in diameter.  
Often, imperfect lens seats and other “real world” conditions may amplify distortions due to gravity over what might 
otherwise have been expected.   
 
We begin by providing a methodology to determine the sag due to gravity of a horizontally mounted plane cylindrical 
plate.  The developed formulae provide insight into the factors that affect the magnitude of the self-weight deflection for 
specific optical lens elements.  Using Finite Element Analysis (FEA), we then examine the influence of lens shape on the 
amount of deflection we would anticipate and compare with the closed-form solution.  Results from the analysis and 
interferometric metrology of “real world” cases are discussed, including causes for departure from the ideal predicted 
models.  
 

2. SELF-WEIGHT DISTORTION OF AN EDGE SUPPORTED CYLINDRICAL PLATE 
 
We desire to determine the effects of part scale, part thickness, and specific stiffness on the gravity sag of an optical 
element.  Consider a circular plane parallel plate of uniform thickness supported at its edge.  The analogous real-world 
situation would be a optical window sitting freely on a compliant ring1 near the outermost edge.  Gravity will have the 
greatest effect on the sag of the window when the window is oriented in a horizontal position such that gravity is 
“pulling the center down.”  This case is shown in cross-section in Figure 1. 
 



 
 

Figure 1: Simply supported disk with uniform pressure load 
 
The closed-form solutions found in “Roarks Formulas for Stress and Strain”2 are useful for demonstrating the effects of 
part scale, part thickness, and specific stiffness.  If the “plate constant,” D, is given by: 
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where t  = plate thickness, v  = Poisson’s ratio, and E = Young’s modulus of elasticity, then the deflection, yc, of the 
uniform disk with an applied uniform pressure load (in our case the weight of the disk itself) is given by: 
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where a  = radius of the plate, and q  = load per unit area given by: 
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where   = material density and g = acceleration due to gravity.   

 
We can now explore the effects of part thickness, part scale, and specific density (the ratio of E/ρ) on the self-weight 
deflection of a circular plate.  For purposes of illustration, let us consider a window made of Schott F5 optical glass ( v  = 

0.22, E = 58 x 109 Pa,  = 3470 kg/m3).  It has an aspect ratio (the ratio of the lens’ diameter to its center thickness) of 

8:1, with a diameter of 4 inches and a thickness of 0.5 inches.  If we independently vary in turn the thickness, specific 
density, and part scale from 0.5x to 2x the original values, as shown in Table 1,  
 

Scale Factor 0.5x  1x 2x 

Varying 
Thickness 

Diameter: 4.0" 
Thickness: 0.25"  

E/ρ: 16.7 

Diameter: 4.0" 
Thickness: 0.50"  

E/ρ: 16.7 

Diameter: 4.0" 
Thickness: 1.00"  

E/ρ: 16.7 

Varying 
Specific 
Density 

Diameter: 4.0" 
Thickness: 0.50"  

E/ρ: 8.35 

Diameter: 4.0" 
Thickness: 0.50"  

E/ρ: 16.7 

Diameter: 4.0" 
Thickness: 0.50"  

E/ρ: 33.4 

Varying Part 
Scale 

Diameter: 2.0" 
Thickness: 0.25"  

E/ρ: 16.7 

Diameter: 4.0" 
Thickness: 0.50"  

E/ρ: 16.7 

Diameter: 8.0" 
Thickness: 1.00"  

E/ρ: 16.7 
 

Table 1: Parameters of test cases shown in Figure 2 
  



then plotting yc (converted to waves at 633 nm) as a function of scale factor yields the relationships plotted in Figure 2.   
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Figure 2: Self-weight deflection of an edge supported disk 
 
As was to be expected, the part thickness has a significant effect on its self-weight deflection.  Surprisingly, however, the 
part scale has a similar but opposite effect.  Therefore, for our F5 disk, even as the aspect ratio of 8:1 is maintained, if 
the dimensions are uniformly scaled either up or down, the self-weight deflection is dramatically changed.   
 
While not as severe, specific density also affects the magnitude of self-weight deflection.  The broad range of the 
specific densities of some common optical glasses is shown in Table 2.   
 

Glass Type 
Modulus (Pa), 

E x 10^9 
Density (kg/m^3), ρ x 

10^3 
Specific Density, 

E/ρ  x 10^6  
BK7 81 2.51 32.27 

Fused Silica 67 2.21 30.32 
F5 58 3.47 16.71 

SF6 56 5.18 10.81 
 

Table 2: Specific density of various glass types3 
 
Depending on what level of sag deformation of an optical element is tolerable, the analysis suggests that element aspect 
ratios alone are not sufficient to guarantee as-used performance.  They should be applied with caution.  At minimum, 
they are only relevant for optics of similar diameters and similar specific densities.  Material type and diameter must also 
be considered.   
 
In this regard, the next application of Equations (1) to (3), for a given diameter and material, is to determine the 
minimum thickness required to achieve a maximum deflection.  Historically, optical engineers tend to consider only the 
aspect ratio as a guide to determine a lens’ minimum center thickness.  They have learned from opticians, that the 
desired lens shape is easier to achieve during fabrication when the aspect ratio is at most 6:1 (5:1 being better, 4:1 better 
still, and so on).  If the lens diameter is pre-determined by the optical requirements for a given optical system, then the 
lens thickness may simply be assigned (or targeted) using the aspect ratio rule of thumb.  However, is the “minimum” 
aspect ratio of 6:1, while acceptable to the optician, good enough for the as-built optical system to avoid self-weight 
deflection to a certain level?   
 
Solving Equations (1) to (3) for t, the minimum part thickness to achieve a maximum value of center deflection yields: 
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In optical lithography, for example, typical requirements may dictate that an optical system is to be used in a vertical 
orientation (parallel to gravity), and that lens element surface accuracies of better than λ/50 need to be maintained.  In 
this case, yc = λ/50 = 0.02 λ = 12.7 nm (@ λ = 633 nm).  Then for our F5 window, we can use Equation (4) to tabulate 
the relationship between aspect ratio and part diameter, as in Table 3: 
 

Part Diameter 
(mm) 

Maximum Aspect 
Ratio 

25 35:1 
50 17:1 

100 9:1 
150 6:1 
200 4:1 

 
Table 3:  Aspect ratio required to prevent self-weight distortions in excess of λ/50. 

 
We can see that for “small” to “medium” sized optics (less than 6-inch diameter), the 6:1 aspect ratio will work.  
However, for “large” optics (greater than 6-inch diameter), the 6:1 aspect ratio is not sufficient and the element 
thicknesses would need to be increased.  Another example would be to find the minimum thickness required to produce 
a transmission flat that, when used in a vertically oriented interferometer, would not sag more than what the reference 
surface on the flat is guaranteed to be accurate to.  Flats of 4-inch and 6-inch diameter are industry standards, with larger 
flats for custom-built interferometers not uncommon. 
 

3. FEA OF OPTICAL ELEMENTS 
 
Equations (1) to (4) are useful for establishing how part size and material properties affect self-weight deflection, but 
additional analysis is required to determine how these results relate to actual lens shapes with spherical surfaces.  For our 
purposes, we will consider four different lens shapes: plano-convex, plano-concave, convex-concave (meniscus), and 
plano-plano, as shown in Figure 3.   
 

 
 

Figure 3: Lens shapes 
 



Using Finite Element Analysis, we will analyze the sensitivities of each of these four lens shapes.  Two scenarios are 
considered.  The first maintains a constant average thickness, thus keeping the masses of the four elements similar.  The 
second maintains the center thickness for each shape.  The radii and diameters of the elements were arbitrarily chosen to 
be 91 mm and 40 mm, respectively, and the material was again Schott F5.  In all cases, the elements were simply 
supported on the lower, outer edge of the element:  in-plane translation was allowed, but translation normal to the 
support-plane was constrained.  Table 4 tabulates the results of this exercise.  Included are columns indicating how 
closely the lens shape of each case compares to a FEA result for a plano-plano element.  

 
Self Weight Deflection for Varied Lens Shapes, FEA Results 

  
Constant Average 

Thickness Case 
% Difference from Average 

Thickness, PL-PL, FEA Result 
Constant Center 
Thickness Case 

% Difference from Average 
Thickness, PL-PL, FEA Result 

PL-CX 5.09 nm 8.45% 5.09 nm 24.75% 
PL-CC 7.80 nm 29.23% 2.81 nm -36.30% 

Meniscus 4.33 nm 27.48% 3.36 nm -13.99% 
PL-PL (FEA) 5.52 nm 0.00% 3.83 nm 0.00% 

PL-PL (Eq. 2) 5.38 nm 2.60% 3.70 nm -3.51% 
 

Table 4: Use of the plano-plano model to predict self-weight deflections of various lens shapes 
 
We can conclude from Table 4: 
 

1. Although these elements are not strongly curved, it is apparent that even minor differences in shape affect the 
amount of gravity sag significantly.   

2. Estimating the amount of central deflection based on a simplified plano-plano case may provide insight but is of 
limited accuracy.   

3. Equation (2) results correlate well with the FEA model. 
 

4. “REAL WORLD” EFFECTS, AS-BUILT 
 
The discussion to this point has centered on the self-weight deflection of an element that is supported uniformly 
circumferentially around its edge.  An analogous mounting method is to support the element with a compliant ring, or to 
bond the element around its circumference.  However, in many cases, it is desirable to allow the element to rest on a hard 
seat to establish both centration of the optical surface, as well as the axial position of the element4.  Unless this hard seat 
has been made kinematic, there may be undesired effects when the element is placed on the seat.  A large thin lens, 
resting on a hard seat, will often distort by beginning to take the shape of the seat.  Even very small effects from the 
machining process can cause an element to be distorted to a higher degree than it would be if placed on a compliant ring.   
 
One example of the quality of metals machining can be observed with lens seats that are not perfectly round.   Many 
materials will “spring” when machined, leaving lens seats that were meant to be perfectly circular slightly elliptical in 
shape.  This effect is generally minute; but, considering that the optical surface contacting the lens seat is almost 
perfectly spherical, even a seat that is elliptical at the micron level will be enough to ruin the line contact that we expect.  
In this case, a two-point contact may occur.  The situation then arises, where the majority of the element’s weight will be 
supported on only two points contacting the minor axis of the elliptical lens seat. 
 
Since elements are often mounted in cells, it is likely that two-point contact may be observed in practice.  The authors 
needed to incorporate a fabricated high-precision lens element into a demanding optical assembly.  The lens shape was a 
concave-convex weak meniscus, with concave radius = 487.963 mm, convex radius = 102.447 mm, diameter = 87 mm, 
clear aperture = 80 mm, center thickness = 13.2 mm, and glass type = Schott N-LAF2.  All surfaces were required to 
meet as-built surface irregularities of < λ/20 = 0.050λ = 31.7 nm (@ λ = 633 nm) P-V departure from ideal spherical 
shape.  In actual use, the concave surface was to face vertically pointing up, so the lens seat was against the downward 
facing convex side.   
 



To minimize the effects of gravity, the element was initially supported on a seat of 50 mm diameter (which is inside the 
element’s clear aperture).  The precision metrology incorporated the use of calibrated interferometry to eliminate the 
systematic errors of the interferometer,5 allowing measurements to a level of λ/100 to be achievable.  All measurements 
were made with the interferometer’s axis oriented vertically (with the test lens’ optical axis parallel to gravity).  Figure 4 
shows the interferometric surface map of the fabricated free-state concave surface to be 0.0226 λ = λ/44 over its 80 mm 
clear aperture.   
 

   
 

Figure 4: Interferometric surface map of concave surface in free-state 
 

The lens element was subsequently potted into a high-precision stainless steel cell with seat diameter = 81.9 mm.  The 
surfaces of the potted lens subassembly were then tested again.  This time we found the optical surfaces to be distorted in 
a non-rotationally symmetric manner greater than the required λ/20 specification.  After thorough investigations to 
assure that no stresses were being imparted to the lens through the adhesive being used, we eventually discovered that 
the lens element was already changing its shape asymmetrically when simply placed into the cell vertically, before any 
adhesive was ever applied.   
 
Figure 5 shows the interferometric surface map of the upward facing concave surface of the fabricated lens element.  It 
was resting under its own weight in its intended metal cell, prior to any adhesives being applied.  It exhibited an 
astigmatic saddle shape of P-V = 0.0771λ = λ/13 = 49 nm over a metrology mask diameter = 77.6 mm.   
 

  
 

    Figure 5:  Interferometric surface map of             Figure 6:  FEA prediction of lens resting in cell  
       concave surface of lens resting in cell          with primarily two-point contact 

   
An FEA model of the identical lens element was created to understand the measured data.  Figure 6 shows the resulting 
prediction of the lens in cross section, with contours of departure from the pre-stressed condition overlaid.  The lens 
element was constrained to rest on only two points oriented 180° apart and separated by a distance equal to the seat 



diameter of 81.9 mm.  The surface showed a similar saddle shape to that of the measured surface of Figure 5.  The FEA 
P-V distortion = 47.5 nm = 0.0750λ = λ/13 over the same metrology diameter of 77.6 mm, which compared closely with 
that of the measured data. 
 
Figure 7 is an FEA model created for the same element when resting on a perfectly circular seat.  The resulting distortion 
of the concave surface was P-V = 6.7 nm = 0.0101λ = λ/94.  Thus, the distortion analyzed in Figure 6 with two-point 
support was approximately seven times greater than the distortion predicted in Figure 7 with a perfectly circular seat. 
 

 
 

Figure 7:   FEA prediction of lens resting on circular seat 
 
Through experimentation, we were able to find mounting conditions that were more favorable.  The metal cells were 
turned on a precision lathe yet tended to exhibit elliptical seats at the micron level.  With extra care in machining, and by 
rotating the lens with respect to the cell during assembly, we found cases where the element’s weight was distributed 
uniformly over three points spaced at ~120°, as shown in Figure 8.   
 

 
 

Figure 8: Interferometric surface map of  concave surface, convex side resting on primarily three-point contact 
 
This measurement showed a much-improved distortion that was no longer saddle-shaped, but had a traditional trefoil 
pattern. The measured P-V = 0.0268λ = λ/37 = 17 nm at a 78.4 mm aperture.   The corresponding FEA model of the 
element, now supported by three equi-spaced points on the 81.9 mm seat diameter, is shown in Figure 9.    
 



 
 

Figure 9: FEA prediction of the element with primarily three-point contact 
 
In this case, the distortion P-V = 0.0290λ = λ/34 = 18.35 nm, as calculated within the 78.4 mm metrology aperture used 
in Figure 8.   
 
In general, an element that is supported on three points, equally spaced around the contact diameter, represents the best 
possible condition for successful mounting against a hard seat.   
 
We can incorporate the “real-world” learning into our closed-form solution of the minimum thickness required to 
achieve success.  We observed that the worst-case scenario for the placement of a lens on a lens seat occurred when two-
point contact is made 180˚ apart.  The induced irregularities of a lens element may be more than seven times those 
predicted for the self-weight deflection using a perfectly circular seat.  By modifying Equation (4), we include a constant 
factor, S, to be determined empirically, which accounts for the effects of non-ideal mounting seats: 
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Using Equation (5), we can estimate the thickness required for our N-LAF2 meniscus element to prevent it from 
distorting by more than λ/20 when placed on an elliptical seat.  To apply Equation (5), the diameter of the lens now was 
chosen to be equal to that of the seat diameter = 81.9 mm, S = 7, and yc = λ/20 = 31.7 nm.  The resultant minimum 
required thickness = 15.58 mm, or 2.38 mm (~15%) thicker than the original fabricated element was designed to be. 
 
The FEA analysis depicted in Figure 6 was then repeated for a new element thickness of 15.58mm.  The predicted 
distortion P-V = 31.93 nm = 0.0504λ = λ/19.8.  Considering our chosen factor S = 7 was based on relatively little input 
data, this result showed a better than expected correlation between the FEA model and the result achieved through 
application of Equation (5).  This level of agreement may not occur for all lens shapes and materials.  However, the 
example serves to illustrate the usefulness of Equation (5) for determining a good estimate of required minimum 
thickness for lens elements with relatively weak curvatures.  Without needing to resort to FEA analysis, preliminary 
considerations of ideal lens thicknesses can be simply calculated in the early stages of a design. 
 
Table 3 can also be updated to account for the higher distortions caused by elliptical seats.  Again, setting S = 7, 
Equation (5) is tabulated below. 
 
 



Part Diameter (mm) 
Maximum Diameter 
to Thickness Ratio 

25 13:1 
50 7:1 

100 3:1 
150 2:1 
200 2:1 

 
Table 5: Diameter to thickness ratio required to prevent self-weight distortions in excess of λ/50,  

including a 7x factor to account for mounting effects 
 

5. SUMMARY 
 
Table 5 is shown to illustrate the method for choosing appropriate element thicknesses without the need for any 
calculations whatsoever.  However, it was generated with values for Poisson’s ratio and Young’s modulus appropriate 
for F5 glass.  Greater accuracy for a specific case can be achieved by using the correct material properties for the 
application.  It is also important to determine a value for “S” that is appropriate for the intended mounting conditions.  
The value may be determined either through analysis or experimentally.  In addition, FEA can be used as a further 
check, once a design form has been identified. 
 
Given the increasing demands placed on allowable surface irregularity, attention must be paid to self-weight deflection 
of optics and the resulting optical surface distortions.  In some cases, it may be appropriate to simulate and analyze the 
deflection of an optical element as resting on a perfect lens seat.  In other cases, the boundary conditions must be 
adjusted to account for the likely contact points of the optical element on surrounding metals.  In cases where the contact 
is not well distributed, the distortions are not only greater, but also of a more disruptive nature, since they are generally 
no longer circularly symmetric.  The closed-form approximation for plate deflection can be a useful tool for 
understanding the contribution of the various drivers.  Material properties and part dimensions need to be considered.  
Finite element techniques, coupled with experimentation, are likely to be required when a part’s boundary conditions or 
geometries become more complex.  
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